

Tick (\checkmark) one box.

Number of electrons

Number of neutrons

Number of protons

(1)

(c) A nucleus emits radiation.

Figure 1 shows how the mass number and the atomic number change.

The nucleus is labelled **D**.

Which type of radiation is emitted when nucleus **D** decays?

Tick (√) (one	box.
--------	--------------	-----	------

Alpha

Beta

Neutron

(d) Nucleus **E** also emits radiation.

Figure 2 shows how the mass number and the atomic number change for nucleus E.

Which type of radiation is emitted when nucleus E decays?

Tick (\checkmark) one box.

Alpha

Beta

Neutron

Beta radiation can be used to monitor the thickness of paper during production.

Figure 3 shows how the radiation is used.

The computer uses information from the radiation detector to change the size of the gap between the rollers.

(e) Complete the sentences.

Choose answers from the box.

Each answer can be used once, more than once or not at all.

	decrease	stay the same	incr	ease	
	The thickness of the paper	between the beta sou	irce and the detect	or increases.	
	The reading on the detecto	or will	·		
	This is because the amour	t of radiation absorbed	d by the paper will		(2
f)	All radioactive elements ha	ve a half-life.			(-
	What is meant by 'half-life'?				
	Tick (√) one box.				
	The time it takes for all the half.	e nuclei in a radioactiv	e sample to split in		
	The time it takes for the co	ount rate of a radioacti	ve sample to halve		
	The time it takes for the ra	idiation to travel half o	f its range in air.		
(g)	Why should the radiation s	ource used in Figure 3	3 have a long half-l	ife?	(1)
	Tick (√) one box.				
	So the activity of the source constant.	ce is approximately			
	So the amount of radiatior	n decreases quickly.			
	So the radiation has a long	g range in air.			
					(1) (Total 8 marks)

(a) Complete the sentences.

Nuclear fusion is the joining together of ______.

During nuclear fusion the total mass of the particles ______.

- (2)
- (b) Nuclear fusion of deuterium is difficult to achieve on Earth because of the high temperature needed.

Electricity is used to increase the temperature of 4.0 g of deuterium by 50 000 000 °C.

	specific he	at capacity	of deuterium	= 5200	J/kg °	°C
--	-------------	-------------	--------------	--------	--------	----

Calculate the energy needed to increase the temperature of the deuterium by 50 000 000 °C.

Use the Physics Equations Sheet.

Energy = _____ J

(c) The idea of obtaining power from nuclear fusion was investigated using models.

The models were tested before starting to build the first commercial nuclear fusion power station.

Suggest two reasons why models were tested.

1	 	
2		

	(d)	Generating electricity generating electricity	using nuclea using fossil fu	r fusion will Jels.	have fewer e	nvironmen	tal effects than	
		Explain one environn	nental effect c	of generating	g electricity us	sing fossil t	fuels.	
							(To	(2) otal 9 marks)
3.	Radi	oactive waste from nuc	clear power s	tations is a r	nan-made so	ource of ba	ckground radiat	ion.
	(a)	Which of the following	g is also a ma	n-made sou	rce of backgr	round radia	ation?	
		Tick (√) one box.						
		cosmic rays						
		radiotherapy						
		rocks						
		stars						
								(1)
	(b)	Nuclear power station	is use the pro	cess of nuc	lear fission.			
		Complete the senten	ces to describ	e the proce	ss of nuclear	fission.		
		Choose answers fron	n the box.					
			a neutron		a proton		an electron	
		cosmic rays		energy		gamma rays		x-rays

An unstable nucleus absorbs	i	and splits in	nto two parts.
-----------------------------	---	---------------	----------------

Two or three neutrons are released, as well as _____

and _____.

(3)

PhysicsAndMathsTutor.com

(c) Plutonium-239 is one type of radioactive waste from nuclear power stations.

The following nuclear equation represents the decay of plutonium-239 (Pu-239).

$$^{239}_{94}Pu \rightarrow ^{235}_{92}U + ^{4}_{2}He$$

How does the nuclear equation show that alpha radiation is emitted when plutonium-239 decays?

Tick (\checkmark) one box.

An alpha particle contains 92 protons.

An alpha particle has a mass number of 235.

An alpha particle is the same as a helium nucleus.

(1)

The graph below shows how the activity of a sample of plutonium-239 varies with time.

PhysicsAndMathsTutor.com

(d) How much time will it take for the activity of the sample of plutonium-239 to fall to half of its initial activity?

4. Polonium-210 $\binom{210}{84}$ Polonium-210 $\binom{210}{84}$ is a radioactive isotope that decays by emitting alpha radiation.

(a) Which is the correct decay equation for polonium-210?

Tick (\checkmark) one box.

(1)

(b) Why is alpha radiation dangerous inside the human body?

Tick (✓) **one** box.

The figure below shows how the mass of a sample of polonium-210 changes with time.

PhysicsAndMathsTutor.com

(c)	Determine the	change in ma	ss of the sa	mple of p	olonium-210	between 50 a	nd 150 days.
-----	---------------	--------------	--------------	-----------	-------------	--------------	--------------

		Chang	ge in mass = _			mg
-	stimate the mass of p	olonium-210 rer	maining after :	300 days.		
			Mass =			mg
٧	uclear radiation can c	ause ionisation.				
С	omplete the sentence	eS.				
С	hoose answers from	the box.				
	a negative	an electron	a neutron	a positive	a proton	a zero
4	n atom becomes an i	on when it loses	8			
_				- h - v -	-	

The ancient Greeks thought that atoms were tiny spheres that could not be divided into anything smaller.

Since then, different discoveries have led to the model of the atom changing.

Some of the discoveries are given in the table below.

The mass of an atom is concentrated in the nucleus.	Α
Electrons orbit the nucleus at specific distances.	В
The nucleus contains neutrons.	С
The nucleus contains positively charged protons.	D

(a) Which discovery was the earliest?

Tick (\checkmark) one box.

	A	в	c	D	
--	---	---	---	---	--

(b) Which discovery was the most recent?

Tick (\checkmark) one box.

	A	В		c		D	
--	---	---	--	---	--	---	--

(1)

(1)

(c) The alpha particle scattering experiment led to the nuclear model of the atom.

The figure below shows the paths of alpha particles travelling close to a gold nucleus.

Complete the sentences.

Choose answers from the box.

Each answer may be used once, more than once or not at all.

attracts	decreases	does not change
increases	reflects	repels

Alpha particles and gold nuclei are both positively charged.

The gold nucleus	the alpha	a particles.
------------------	-----------	--------------

As the alpha particle approaches the gold nucleus, the electric field strength

experienced by the alpha particle ______.

As an alpha particle approaches the gold nucleus, the force

experienced by the alpha particle ______.

(d) The results of the alpha particle scattering experiment were reproducible.

What does reproducible mean?

Tick (\checkmark) one box.

Another scientist repeats the experiment and gets the same results.

Another scientist repeats the experiment and gets different results.

The same scientist repeats the experiment and gets the same results.

The same scientist repeats the experiment and gets different results.

(1) (Total 6 marks)

6. Americium-241 $\binom{241}{95}$ Americium.

(a) Which of the isotopes given in the table below is **not** an isotope of americium?

Isotope	Mass number	Atomic number
A	243	95
В	243	94
С	242	95

Isotope _____

Give a reason for your answer.

The graph below shows how the number of americium-241 nuclei in a sample changes with time.

(b) How many years does it take for the number of americium-241 nuclei to decrease from 10 000 to 5000?

7. Nuclear power can be used to generate electricity through nuclear fission.

Figure 1 shows the process of nuclear fission.

Figure 1

(a) Complete the sentences.

Choose answers from the box.

	gamma rays	light rays	proton	neutron	nucleus	X-rays
	During the process	of nuclear fission	, a uranium			
	absorbs a	·				
	Electromagnetic rac	diation is released	in the form of .			(3)
(b)	The UK needs at lea	ast 25 000 000 k\	N of electrical p	ower at any tim	e.	
	A nuclear power sta	ation has an elect	rical power outp	out of 2 400 000	kW	
	Calculate how many electrical power.	y nuclear power s	stations are nee	ded to provide 2	25 000 000 kW of	
	Ν	lumber of nuclea	r power stations	;=		
(c)	State two environm stations.	ental issues caus	ed by generatir	ng electricity usi	ng nuclear power	(2)
	1					
	2					

(d) The UK currently generates a lot of electricity by burning natural gas. This process releases carbon dioxide into the atmosphere.

Figure 2 shows how the concentration of carbon dioxide in the atmosphere has changed over the past 115 years.

Figure 2

Figure 3 shows how the global temperature has changed over the past 115 years.

Figure 3

	Similarity	
	Difference	
	(Tota	al 9 m
A tea seco	acher used a Geiger-Muller tube and counter to measure the number of counts in 60 onds for a radioactive rock.	
(a)	The counter recorded 819 counts in 60 seconds. The background radiation count rate w 0.30 counts per second.	vas
	Calculate the count rate for the rock.	
	Count rate = per second	
(b)	Count rate = per second A householder is worried about the radiation emitted by the granite worktop in his kitche	en.
(b)	Count rate = per second A householder is worried about the radiation emitted by the granite worktop in his kitcher 1 kg of granite has an activity of 1250 Bq. The kitchen worktop has a mass of 180 kg.	en.
(b)	Count rate = per second A householder is worried about the radiation emitted by the granite worktop in his kitche 1 kg of granite has an activity of 1250 Bq. The kitchen worktop has a mass of 180 kg. Calculate the activity of the kitchen worktop in Bq.	en.
(b)	Count rate = per second A householder is worried about the radiation emitted by the granite worktop in his kitcher 1 kg of granite has an activity of 1250 Bq. The kitchen worktop has a mass of 180 kg. Calculate the activity of the kitchen worktop in Bq.	en.
(b)	Count rate = per second A householder is worried about the radiation emitted by the granite worktop in his kitcher 1 kg of granite has an activity of 1250 Bq. The kitchen worktop has a mass of 180 kg. Calculate the activity of the kitchen worktop in Bq.	en.

(c) The average total radiation dose per year in the UK is 2.0 millisieverts.

The table below shows the effects of radiation dose on the human body.

Radiation dose in millisieverts	Effects		
10 000	Immediate illness; death within a few weeks		
1000	Radiation sickness; unlikely to cause death		
100	Lowest dose with evidence of causing cancer		

The average radiation dose from the granite worktop is 0.003 millisieverts per day.

Explain why the householder should **not** be concerned about his yearly radiation dose from the granite worktop.

One year is 365 days.

(d) Bananas are a source of background radiation. Some people think that the unit of radiation dose should be changed from sieverts to Banana Equivalent Dose.

Suggest **one** reason why the Banana Equivalent Dose may help the public be more aware of radiation risks.

(2)

The diagram shows a lithium atom.

(a) What is the mass number of this lithium atom?

Tick **one** box.

(c) Complete the sentence.

Choose the answer from the box.

circles levels rings

The electrons in an atom orbit in different energy _

(d) Some atomic nuclei are unstable and decay by emitting an alpha particle or a beta particle.

Complete the symbols for an alpha particle and a beta particle.

Use answers from the box.

(1)

(e) Doctors may use nuclear radiation to diagnose certain types of illness.

The table below gives data about three radiation sources used.

Each source emits beta radiation.

Radiation source	Half-life in minutes
Carbon-11	20
Nitrogen-13	10
Oxygen-15	2

	Explain why oxygen-15 is likely to pose t	the least risk to a patient.	_
			_
			-
		((2) Total 9 marks)
10. Sou	rces of background radiation are either na	tural or man-made.	
(a)	Which two of the sources listed in the ta	ble are natural sources of background radia	ation?
	Tick two boxes.		
	Cosmic rays		
	Medical X-rays		
	Nuclear power stations		
	Nuclear weapons testing		
	Radon gas		
			(2)

A teacher used a Geiger-Müller (GM) tube and counter to measure the background radiation in his laboratory.

Figure 1 shows the GM tube and counter.

(b) The table gives three readings taken by the teacher at three different times on the same day.

Counts in 1 minute	
16	
21	
18	

What is the most likely reason for the readings being different?

Tick **one** box.

Radioactive decay is a random process.

The air pressure in the laboratory increased.

The background radiation increased during the day.

The temperature in the laboratory decreased.

(c) The teacher takes a radioactive source from a storage box.

Figure 2 shows the box.

Figure 2

Why does storing the radioactive source in the box reduce the risk of radiation exposure to the teacher?

Tick **one** box.

The lead lining absorbs the emitted radiation.

The lead lining reflects the emitted radiation.

The lead lining transmits the emitted radiation.

- (d) **Figure 3** shows how the teacher used the GM tube and counter to measure the radiation emitted from the radioactive source.

The counter was reset to zero.

The count after one minute was 159.

(1)

(1)

How should the teacher calculate the counts from the radioactive source? Tick **one** box.

(e) The teacher passed the radiation through an electric field.

Figure 4 shows the path that the radiation took through the electric field.

11.

What type of radiation was being emitted by the radioactive source?

Tick one box

plain the reason for your a	swer.		
			(Total
ta and gamma are types	nuclear radiatior		
P () (• P • • • •		
w one line from each type	of radiation to wh	at the radiation consists o	f.
w one line from each type Type of radiation	of radiation to wh	at the radiation consists o What radiation co	^{f.} nsists of
w one line from each type	of radiation to wh	at the radiation consists o What radiation con Electron from the	f. nsists of nucleus
w one line from each type Type of radiation Alpha	of radiation to wh	at the radiation consists o What radiation con Electron from the	f. nsists of nucleus
w one line from each type Type of radiation Alpha	of radiation to wh	at the radiation consists o What radiation con Electron from the Two protons and two	f. nsists of nucleus
w one line from each type Type of radiation Alpha Beta	of radiation to wh	at the radiation consists o What radiation con Electron from the Two protons and two	f. nsists of nucleus
w one line from each type Type of radiation Alpha Beta	of radiation to wh	at the radiation consists o What radiation con Electron from the Two protons and two Electromagnetic ra	f. nsists of nucleus o neutrons
w one line from each type Type of radiation Alpha Beta Gamma	of radiation to wh	at the radiation consists o What radiation con Electron from the Two protons and two Electromagnetic ra	f. nsists of nucleus o neutrons adiation
ta and gamma are types	nuclear radiation		

(b) A teacher demonstrates the penetration of alpha, beta and gamma radiation through different materials.

The demonstration is shown in the figure below.

Complete the figure above by writing the name of the correct radiation in each box.

(c) Give **two** safety precautions the teacher should have taken in the demonstration.

(d) The table below shows how the count rate from a radioactive source changes with time.

Time in seconds	0	40	80	120	160
Count rate in counts/second	400	283	200	141	100

Use the table to calculate the count rate after 200 seconds.

(2)

(2)

(e) The half-life of the radioactive source used was very short.

Give **one** reason why this radioactive source would be much less hazardous after 800 seconds.

(1) (Total 10 marks)

12.

Scientists sometimes replace one scientific model with a different model.

For example, in the early 20th Century the plum pudding model of the atom was replaced by the nuclear model of the atom.

Explain what led to the plum pudding model of the atom being replaced by the nuclear model of the atom.

(Total 6 marks)